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The stability of matter composed of electrons and static nuclei is investigated for 
a relativistic dynamics for the electrons given by a suitably projected Dirac 
operator and with Coulomb interactions. In addition there is an arbitrary classical 
magnetic field of finite energy. Despite the previously known facts that ordinary 
nonrelativistic matter with magnetic fields, or relativistic matter without magnetic 
fields, is already unstable when 0t, the fine structure constant, is too large, it is 
noteworthy that the combination of the two is still stable provided the projection 
onto the positive energy states of the Dirac operator, which defines the electron, 
is chosen properly. A good choice is to include the magnetic field in the defini- 
tion. A bad choice, which always leads to instability, is the usual one in which 
the positive energy states are defined by the free Dirac operator. Both assertions 
are proved here. 

KEY WORDS: Stability of matter; Schr6dinger operators; magnetic fields; 
relativistic; Dirac operator; instability of matter. 

1. I N T R O D U C T I O N  

T h e  s tab i l i ty  of  m a t t e r  c o n c e r n s  the  m a n y - e l e c t r o n  a n d  m a n y - n u c l e u s  

q u a n t u m  m e c h a n i c a l  p r o b l e m  a n d  the  q u e s t i o n  w h e t h e r  the  g r o u n d  s ta te  

e n e r g y  is finite ( s tab i l i ty  of  the  first k ind) .  I f  so, is it b o u n d e d  b e l o w  by  a 
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constant (which is independent of the position of the nuclei) times the 
number of particles (stability of the second kind)? The linear lower bound 
is important for thermodynamics, which will not exist in the usual way 
without it. 

The first positive resolution of this problem for the nonrelativistic 
Schr6dinger equation was given by Dyson and Lenard ~7' 8) and approached 
differently by Federbush. t~~ The constant, i.e., the energy per particle, was 
considerably improved by Lieb and Thirring in refs. 21 and 22. Following 
that, the stability of a relativistic version of the Schr6dinger equation (in 
which p2 is replaced by Jp2 + m  2) was proved by Conlon tS) and later 
improved by Lieb and Yau t23) who showed that matter is stable in this 
model if and only if the fine structure constant 0c is small enough and if 
Z0c ~< 2/n. (See ref. 23 for a historical account up to 1995.) A recent result 
of Lieb, Loss, and Siedentop that we shall use is in ref. 19 and is discussed 
in Section 3. 

In these works the nuclei are fixed in space because they are very 
massive and because we know that the nuclear motion is largely irrelevant 
for understanding matter. In other words, if nuclear motion were the only 
thing that prevented the instability of matter then the world would look 
very different from what it does. We continue this practice here. 

There is, however, a more important quantity that requires some 
attention, namely magnetic fields. It was noted that the action of such fields 
on the translational degrees of freedom of the electrons p ~ p + cA, can 
lower the energy only by an inconsequential amount. This is a kind of 
diamagnetic inequality. On the other hand, spin-magnetic field interaction 
(in which ( p + e A )  2 is replaced by the Pauli operator [#.(p+eA)]2= 
(p+eA)Z+e~r.B can cause instability. The energy is then unbounded 
below if arbitrarily large fields are allowed, but this is so only because the 
energy of the magnetic field has not been taken into account. Does the field 
energy, (8n)-~ ~ B 2, insure stability? This question was raised for the non- 
relativistic ease in ref. 13 and finally settled in a satisfactory manner in 
ref. 20 (see also Bugliaro et aL ~4) and Feffermanttt)). The upshot of this 
investigation-is that stability (of both first and second kinds) requires a 
bound on both 0c and on Z0c 2. 

Other related results are the stability of non-relativistic matter with a 
second quantized, ultra-violet cut-off photon field (Fr6hlich et  a/.tl2)). 

Both the passage to relativistic kinematics (which, in quantum 
mechanics, means that both the kinetic energy and the Coulomb potential 
scale with length in the same way, namely like an inverse length) and the 
introduction of the nonrelativistie Pauli operator require a bound on 0c and 
on Z for stability. The combination of the two might be expected to lead 
to disaster. We find, however, that it does not necessarily do so! 
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Our main result is that matter is indeed stable with a suitably defined 
relativistic kinematics. This is shown in Section 3. 

The proper way to introduce relativistic kinematics for spin-l/2 par- 
ticles is via the Dirac operator, but this is unbounded below. A resolution 
of this problem, due to Dirac, is to permit the electrons to live only in the 
positive energy subspace of the Dirac operator. This idea was further pursued 
by Brown and Ravenhall t3~ (see also Bethe and Salpeter in their Handbuch 
article t~)) to give a quantitative description of real atoms. 

There are, however, other Dirac operators (which include electro- 
magnetic potentials) whose positive subspace can be used to define the 
space in which the electrons can live. (To avoid confusion, let us note that 
the Hamiltonian is formally always the same and includes whatever fields 
happen to be present. The only point to be resolved is what part of the 
one-particle Hilbert space is allowed for electrons.) The review articles of 
S u c h e r  t24'25"26) can  be consulted here. These choices have also been used 
in quantum chemistry and other practical calculations, see, e.g., refs. 14 
and 15. 

All of these choices have in common that there is no creation of elec- 
tron-positron pairs explaining the name "no-pair Hamiltonian" for the 
resulting energy operator. (Note that we could also treat positrons or a 
combination of electrons and positrons interacting by Coulomb forces in a 
similar way.) 

There are three obvious choices to consider. One is the free Dirac 
operator. This always leads to instability of the first kind when a magnetic 
field is added unless the particle number is held to some small value (see 
Section 4). Note also that this choice leads to a non-gauge invariant model: 
multiplication of a state with the factor exp(i~b(r)) for a non-constant gauge 
is not allowed, since it leads out of the positive spectral subspace. 

Remarkably, the Dirac operator that includes the magnetic field 
always gives stability, if Z and 0c are not too large, as in the two cases 
(relativistic without magnetic field and nonrelativistic with magnetic field) 
mentioned above (see Section 3). This model is gauge invariant. 

The third-choice which, indeed, is sometimes used, is to include both 
the one-body attractive electric potential of the nuclei and the magnetic 
field in the definition of the Dirac operator that defines the positive sub- 
space. If this is done then the question of stability is immediately solved 
because the remaining terms in the Hamiltonian are positive, and hence the 
total energy is ipso facto positive. This choice, which is important but 
trivial in the context of this present inquiry, will not be mentioned further. 

Oddly, the instability proof given in Subsection 4.2 is much more 
complicated than the stability proof (Section 3). This reverses the usual 
situation. 
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A preliminary version of this paper appeared in ref. 27; the present 
version is to be regarded as the original one (as stated in ref. 27) and con- 
tains several significant corrections to the preliminary text in ref. 27. In par- 
ticular, the proof of Theorem 2 and the first half of the proof of Theorem 1 
have been corrected and simplified. A summary of this work appears in 
ref. 28. 

2. BASIC DEFINITIONS 

The energy of N relativistic electrons in the field of K nuclei with 
atomic numbers Z~ ,..., ZK ~ R + located at R~,..., RK ~ R 3 which are pair- 
wise different in a magnetic field B = V x A in the state ~u is--following the 
ideas of Brown and Ravenhall (3)-  

( (~~l ) ) 1  fR g [ ~ ,  ~ ]  := ~, O~(A)+aVc �9 +~-~ 3B(r)Zdr. (1) 

Here D r ( A ) : = a . ( - i V v + e A ( r ~ ) ) + m f l  is the Dirac operator with vector 
potential A. Furthermore, 

N K Z x  

V c : = - v ~  ~ Irv-R~l ----1 K ' = I  

N 1 K Z,~Za 
~ +  ~ [ ru - r~ [+  ~ IR~-R~[ (2) /a, v =  l~<v x', 2---- lh-<A 

is the Coulomb interaction between the particles, and B(r) := IV x A(r)[ is 
the modulus of the magnetic field. Planek's constant divided by 2z~ and the 
velocity of light, are taken to be one in suitable units. The fine structure 
constant a equals e 2, where - e  is the electron charge. Experimentally, a is 
about 1/137.037. The mass of the electron is denoted by m. The 4 x 4 
matrices a and fl are the four Dirac matrices in standard representation, 
namely 

(Oct O ) ( 0 1  1 ) ( O i - i  I (10 01) f l t ~  ~ 0"1 ~ 0 ~ 0 " 2 =  0 ~ 0 " 3 =  

and 

1 0 0 0 
0 1 0 0 

f l= 0 0 - 1  i " 
0 0 0 - 
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Finally, the state �9 should have finite kinetic energy, i.e., it should be 
in the Sobolev space Ht/2[(R3 x { 1, 2, 3, 4} )N], and should also be in the 
electronic Hilbert space of antisymmetric spinors 

N 

:= A (3) 
v = l  

where ~ §  is the positive spectral subspace of the Dirac operator D ( d )  and 
where ~r is some vector potential to be chosen later. The vector potential 
~r serves to define the positive subspace. The restriction of g to OC~N. ~r will 
be denoted ~ .  Two choices will be considered here. One is ~r =0,  in 
which case we are talking about the free Dirac operator. This choice, or 
model, goes back to Brown and Ravenhall. t3) As we shall see in Section 4, 
the resulting energy functional--apart from being not gauge invariant--is 
not bounded from below. A natural modification of the model, namely to 
take d := A is not only gauge invariant, but will also turn out to be stable 
of the second kind (see Section 3). 

The quantity of interest is the lowest possible energy 

EN, r := inf g.~r 

where the infimum is taken over all allowed, normalized states ~,  all 
allowed vector potentials A, and over all pairwise different nuclear posi- 
tions R ~ ,..., Rr. 

In the case of a single nucleus without a magnetic field, the energy 
form o~o was shown in ref. 9 to be bounded from below, if and only if 
o~Z <~ aZc :=2/(n/2 + 2/n) > 2/n, which corresponds to Z c ~  124. We will 
not be able to reach this value in the general case of many nuclei and when 
the electron state space is not determined by the free Dirac operator. The 
reason is that special techniques were used in ref. 9 to handle the one- 
nucleus case; these techniques took advantage of the weakening of the 
Coulomb singularities caused by the fact that states in off+ cannot be 
localized in space arbitrarily sharply. Unfortunately, we do not know how 
to implement "this observation with magnetic fields and many nuclei. 

3. STABILITY WITH THE MODIFIED PROJECTOR 

Our proof of the stability of matter when the vector potential A is 
included in the definition of the positive energy electron states will depend 
essentially on three inequalities: 

BKS Inequality. For any self-adjoint operator X, the negative 
(positive) part, X~ is defined to be (]X[ ~ X)/2. Given two non-negative 
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self-adjoint operators C and D such that (C2--D2) 1/2 is trace class, we 
have the trace inequality 

tr( C -  D)_ ~< tr( C 2 - D 2) ~2. (4) 

This is a special case of a more general inequality of Birman, Koplienko, 
and Solomyak; ~2) in particular, the number 2 in (4) can be replaced by any 
p > 1. A proof for the special case of the inequality needed here is given in 
Appendix A. 

Stability of Relativistic Matter.  
fermionic Hilbert space, we have 

On AN I/2( 3 ~=~ (H R ) |  the 

N 

I - i V ~ - ~ r  + 0~v~ ~> 0, (5) 
v-----I 

(where I"" [ means x/( "'" )2) for all vector fields ~r ~3...+ ~3 with, e.g., 
square integrable gradients, if 

1/~ >i 1/s := (n/2) Z + 2.2159ql/aZ 2/3 + 1.0307q 1/3 (6) 

and Zt ,..., Z r r  Z. 
We wish to use this inequality for 4-component spinors, i.e., q =4.  

However, we are interested in the subspace ~'N. ~ in which the particles are 
restricted to the positive energy subspace of the Dirac operator, D(~r 
Although q = 4, the "effective" q is really 2, and the analysis in Appendix B 
is our justification for this. The only thing that really counts in deriving (5) 
is the bound on the reduced one-body density matrix ), mentioned in 
Appendix B. 

The stability of the relativistic Hamiltonian (5) was first shown by 
Conlon is) for sd = 0. The best currently available constants with ~d = 0 are 
in ref. 23 while (6), which is taken from ref. 19, is the best known result for 
general ~1. 

Semi-Classical Bound. Given a positive constant/~, a real vector 
field ~r with, e.g., square integrable gradients, and a real-valued function 
cp e L2( R 3) the inequality 

Ll/2" fR 2 tr[ ( - i/~ V - ,~r _ cp ] ,/2 ~< "/t3 3 3 q~ + (7) 

holds, which is a special case of the Lieb-Thirring inequality (see refs. 22 
and 17]). It is known that L~/2.3<~0.06003. The left side of (7) is simply 
Yj I~jl ,/2 where the 2j are the negative eigenvalues of the operator [ .. .  ]. 



Relativistic Electrons in Classical EM Fields 43 

As an illustration of the usefulness of the trace estimate (4), let us 
combine it with the Lieb-Thirring inequality (7) (or any other Lieb-Thirring 
inequality for that matter) to derive some previously known inequalities. 
The constants obtainable in this way are comparable with the best ones 
known so far: 

Daubechies Inequality.  We begin with a "relativistic" inequality 
that was first proven by Daubechies./6) By replacing cp by r# 2 in (7), we get 
using (4) 

t r ( I - i  V - d l - ( p ) _  ~ LI/2. 3 fR3 (P4+ �9 (8) 

The constant 0.06003 obtained here should be compared with the number 
0.0258 in ref. 6. 

Non-Relat iv ist ic  Magnet ic  Stabil i ty.  
of our main problem is to bound the form 

A non-relativistic analogue 

o~'= V, e~(A)+0cV,. V +~nn 3B(r dr (9) 

which was treated in ref. 20. Here Pv(A):= [o.(- iVv+eA(r~))]  2 is the 
Pauli operator with vector potential A. 

First, we note that x2~> + 2 Ixl- A2/4 holds. A constant in the energy 
form, however, is irrelevant for checking on stability of the second kind. 
Using (5) it is then enough to show the positivity of 

- t r ( A P ( A ) l / 2 - x l - i V + e A I ) -  +-~n 3 B(r)2dr (10) 

where we have set x := oc/o~c. The trace in this and the next expression are 
over L2(R3)(~)C 2. Using the BKS inequality gives the lower bound 

-- tr[ (22 -- /c 2) I - i V  +eA12)-e22B(r)] l/2-t--ff-~ sB(r dr. 

Applying the Lieb-Thirring inequality (7) yields the following suf- 
ficient condition for stability (recall that 0c = e 2 and that there are two spin 
states) 

,~40~ l 
2L1/2. 3 (,,1.2 _ x2)3/2 ~ ~"~" 



44 Lieb e t  al. 

Optimizing in 2 gives 

160c 2 1 
2L1/2, 3 33/28c ~< 8re' 

which gives for the physical values ~ 1/137.037 and q = 2  a range of 
stability up to Z ~< 1096, which is to be compared with Z ~< 1050 in ref. 20. 

We turn now to our main result. 

Theorem 1. Let Z~,...,ZK~Z<2/(no~) and let ~ < ~  where ~ is 
the unique solution of the equation 

(161tLl/E, 3tXc) 2/3 = 1 _ oc c2/OCc~2, 

with 8~ := [(n/2) Z + 2.2159.21/3Z 2/3 + 1.0307.21/3] - l  as in (6). Then g'A is 
non-negative. 

Numerically, this gives 

Z ~ 5 6  

when evaluated with the experimental value cz ~ 1/137.037 for the fine struc- 
ture constant. Alternatively, considering hydrogen only, i.e., Z =  1, we 
obtain the upper bound 

~< 1/8.139 

for the fine structure constant. It is a challenge to improve this result so 
that it covers all physical nuclear charges and the physical value of the fine 
structure constant, as was done for K =  N = 1 and A = 0 in ref. 9. 

It is easy to prove (we do not do so here) that, as expected, o~a/(~F, ~ )  >I 
m-O(o~2Z 2) for small 0c and Z. 

Proof. The first step in our proof is to utilize (5) to replace V~ by the 
one-body operator ( -  1/8~) Zv~ 1 I - i  Vv + eAI, where ~ is given by (6) 
with q = 2, as we explained just after (6). (The idea of using the relativistic 
stability result (5) to bound the Coulomb potential by a one-body operator 
first appears in ref. 20.) Our energy o~a is now bounded below by 

( N ) 1 ~R 
o~'('t ') := ~I', y'  (Dv(A)--x I-iVv+eA(r~)l)~e +-~--~ B(r) 2dr, (11) 

v - ' - I  3 

where x := o~/8~. 
The first term on the fight side of (11) is bounded below by the sum 

of the negative eigenvalues, - t r  h_ ,  of the one-body operator 

h :=A+(D(A)-x  I - i V  + eA(r)l) A +, 

where A + is the projector onto the positive spectral subspace of D(A). 
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Let us define 

S "= I O ( a ) l - ~ :  I - i  V + eA(r)l, 

whence h = A + SA +, because A + D(A) A + = A + ID(A)I A +. We note that 
for any two self-adjoint operators X and p with X>~0 and 0 ~<p ~< 1, 
tr X>~ tr pX. With p taken to be the projector onto the negative spectral 
subspace of h we then have that 

tr h_ = - t r  ph = - t r  pA + SA + 

= t r  pA + S _ A  + - t r  pA + S+ A + 

~ < t r A + S  A+. (12) 

We introduce the 4 x 4 unitary 

- 1  0 

and note that U - ~ D(A) U = - D(A). Therefore, U - ~A U = A § - -  �9 

It follows from the spectral theorem that for any self-adjoint X, 
unitary U, and function F 

F( U - ' X U )  = U - ' F ( X )  U. 

With F ( t ) =  It[, we then have that U - t  ID(A)[ U =  ID(A)I, and hence 
U - I S U = S .  

Therefore, since U -  t A U = A and with F(t) = + _, y ( I t l - t )  = t _ ,  we 
have that U - ~ S _  U= S_ and 

t r A + S _ A +  = t r  A _ S _ A _ .  

Hence, using (12), 

tr h _ ~< �89 tr(A + S_  A + ) + �89 tr A _ S_ A _ = � 8 9  

(Note: much of the preceding discussion was needed only to get the factor 
1/2 here. This factor improves our final constants for stability.) 

Next, we use the BKS inequality (4) to bound tr S_  as follows: 

tr h_ ~< �89 tr S_  ~< �89 t r [ D ( A ) 2 - X  2 I - i V  + eA(r ) l : ]  '_/2. (13) 
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However, D(A) 2 = ( ~ o) with Y= P(A) + m 2, and where 

P(A) = [o .  ( - i  V + eA)] 2 = I - i  V + eA(r)l 2 + eo. B(r) 

is the Pauli operator. 
Since X~--, tr X~/_ 2 is operator monotone decreasing, we see that our 

lower bound for the energy is monotone increasing in m, and thus it suffices 
to prove the positivity of ~r A in the massless case. The key observation 
is that our lower bound involves only tr S_ in the entire one-body space, 
not the positive energy subspace. The energy would not be obviously 
monotone in m if we had to restrict functions to the positive subspace, 
since changing m would also entail changing the space. This problem does 
not arise in the absence of the positive subspace constraint. 

Because of the "diagonal" structure of the operator S, we can drop 
the factor 1/2 by replacing the trace on L2(,R3)(~)C 4 by the trace on 
L2(R 3) (~ C 2 This yields 

O~A[*F, *F] >I - t r [ P ( A ) - x E ( - i V  +eA)2]~_/2 +8-~n 3B(r)2 dr 

i> --2 tr[(1 - x 2 ) ( - i V  +eA)2-eB]  1/2 +-~n 3B(r)2 dr. (14) 

We regard the operator in the second line as acting on functions (of one 
component only) instead of spinors, which accounts for the factor two (and 
not one). Finally we apply the Lieb-Thirring inequality (7) to the right 
hand side yielding (recall that e2= 0c) 

#A[*F, ~F] >i [ -2L, /2 ,  3-(1-~21~)-3/2  + 1/(8n)] fR3 BE(r) 2 dr. 

Thus we need 

( 1 &rL1/2, ~ 1 - . (15) 

Since the right hand side of this inequality is monotone decreasing in 0c for 
positive ~, while the left hand side is monotone increasing, there is a unique 
0~c for which equality holds in (15). Inserting the value (6) with q = 2  for 
~c yields--together with the second requirement on Z~,...,ZK in the 
relativistic bound--the claimed stability criterion. 
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4. INSTABILITY WITH THE FREE DIRAC OPERATOR 

In this section we shall discuss the Brown-Ravenhall model. (3) That 
is to say we consider the energy expression (1) with zero vector potential 
in the definition of the allowed electronic states (3), i.e., we take only 

e~N.O = A N ~ + ,  where Jt~+ is the positive spectral subspace of the 
operator - a .  i V + mfl. We shall prove that there is no stability is in this 
model by showing that for any (sufficiently large) particle number, N, and 
any 0c > 0 the energy is unbounded below. In other words, "stability of the 
first kind" is violated. It is nevertheless true, however, that for any choice 
of particle numbers and nuclear charges there is always a sufficiently small, 
nonzero 0c such that the energy is bounded below by zero. 

Since the positive spectral subspace ~ +  for the free Dirac operator is 
not invariant under gauge transformations we see that this Brown- 
Ravenhall model is not gauge invariant. (The previous, modified model 
discussed in Section 3 is not only stable, it is also gauge invariant.) More 
precisely, the energy spectrum depends not only on B but in fact on the full 
gauge potential A. The Brown-Ravenhall model is therefore physically 
meaningfully defined only if we make a fixed choice of gauge. The natural 
choice is the Coulomb gauge (radiation gauge), 

V . A = 0 ,  

since in quantum electro-dynamics this gauge implies that electrons inter- 
act via the usual Coulomb potentials and the coupling to the transverse 
field is minimal, i.e., derivatives are replaced by covariant derivatives. 

The interesting qaaantity is the lowest energy that the system can have. 

Definit ion 1 (Energy).  

EN. K := inf OVo[~, ~ ] .  

where the infimum is taken over all divergence free A fields, pairwise distinct 
nuclear locations R t,..., R/~ and normalized, antisymmetric states �9 ~ Jgu. 0. 

4.1. Stabi l i ty wi th  Small o and Small Particle Number  

Since this result is not a main point of this paper we shall be brief m 
even sketchy. If a single particle W is in the positive spectral subspace of 
D(0) then the action of D(0) on W is the same as multiplication of each 
component by (p2 + m 2) 1/2 in Fourier space. For such functions we see that 
(~,  D(O) ~ )  exceeds (~,  IV[ ~) ,  so we may as well replace D(O) by IV[ and 
also drop the condition that �9 belongs to the positive spectral subspace 
of D(O). 

822/89/1-2-4 
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The next step is to use the lower bound on Vc in (5) so that the energy 
is now bounded below by a sum of one-body operators, in a manner 
similar to that in Section 3 with ~ as in Theorem 1" 

v = l  

(16) 

(Note again that the "effective spin" q is 2, as can be seen be repeating the 
above argument.) Here j(r) is the current in the state W and it is trivially 
bounded above pointwise by the density p(r) in the state W (defined in 
Appendix B). Therefore the integral involving A is bounded below by 

f j A >i - f~ p a  >i - IIa II 6 N'/3 lip II =/~ " 4 / 3 " ,  
3 3 

Now J B2~S IVAI 2 and this is not less than K3 2 IIAII~ by Sobolev's 
inec~uality where K3=41/a(3zt) -1/2 zc -I/6 (see ref. 16, p. 367). Similarly, the 
kinetic energy (~, ~N v-l IV~l 'I') is bounded below by 1.63q 1/3 ~p4/3, 
which was proved by Daubechies (6) and which follows from (8). If we use 
these inequalities and then minimize the energy with respect to the 
unknown quantity IIAII6, we easily find that the energy is non-negative as 
long as 

1.63( 1 - oc/o~) >i 2rtN2/3K2qt/3a 

with q = 2. 
We shall show in Subsection 4.2 that the condition that N2/3ot. is small, 

which--as we just proved---ensures boundedness from below, is in fact also 
necessary for the energy to be bounded from below. 

4.2. Instability for All o and Large Particle Number 

The main result of this section is that there is no stability in this model 
for any fixed, positive ~ if N and K are allowed to be arbitrary. 

Theorem 2 (Instabil i ty). There exists a universal number C>O 
such that for all values of the parameters ~ > 0, m >i 0, K = 1, 2, 3,..., and all 
values of N = 1, 2, 3,..., and of Z~, Z2,..., ZK satisfying 

K K 

Z Z~ > C max { oc- 3/2, 1 }, N > C max { oc- 3/2, 1 }, Z Z2 > 2 
l c - - I  K - - I  
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we have 

EN, K = - -00.  

Proofi The theorem follows if, for all E > 0, we show the existence of 
three quantities for which 80[ ~ ,  ~-] ~ - E, with �9 = ~ l ^ "'" ^ ~N: 

A. A vector potential A with V. A = 0. 

B. Orthonormal spinors ~ l,--., ~N ~ ~ §  

C. Nuclear coordinates R t,..., RE. 

Our construction willed depend on four parameters (to be specified at 
the very end), fi > 0 a momentum scale, which we shall let tend to infinity, 
0 > 0 ,  which will be chosen sufficiently small (but independently of N), 
and P, Ao > 0 which will be chosen as functions of N. Finally we denote by 
n~, n2, n3 the coordinate vectors (1, 0, 0), (0, 1, 0), (0, 0, 1 ) respectively. We 
shall use the notation that tOp=p/[p[ is the unit vector in the direction 
p E R  3. 

A. The vector potentia/. We choose the vector potential A to have 
Fourier transform 

A 

A(p) "= AoZs(o, 5,~)(P)(n2" COp) n 3 X COp, 

where Z8(o, 5~) denotes the characteristic function (in p-space) of the ball 
B(0, 5fi) centered at 0 with radius 5ft. Note first that A is real since .~ is 

A A 

real and A ( p ) = A ( - p ) .  Moreover, A is divergence free, i.e., it is in the 
A A 

Coulomb gauge, since - i V . A ( p ) = p . A ( p ) = 0 .  We easily estimate the 
self-energy of the magnetic field B = V x A corresponding to A 

1 f 1 fR ^ f f '  --8n ( V x A ) 2 = ~  .~ [pxA(p)12dp~<Ao22 -I  p 4 d p = 2 - 1 5 4 A 2 o 6 5 .  (17) 

Finally, we note for later use that 

. ~ (p )  �9 n l  -- -AoXslo, 56)(P)(n2 "mp)2. (18) 

B. The orthonormal spinors. For Po ~ 1~3 define 

Up~ j-3/2 ( ZS(~176 (19) 
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We then have a n o r m a l i z e d  I//po~ o3~+ given by 

@p01"(p) = (2E(p)(E(p) + E(0))) -1/2 ((E(p) + E(0)) Up0(p)' ~ 
p �9 tTUp0(p ) J '  

where E(p)._ (p2_[_ m2),/2. Recall that this is the general form of a spinor 
in the positive spectral subspace ~u for the free Dirac operator. 

For the sake of simplicity we shall henceforth assume that m = 0. We 
leave it to the interested reader to check the estimates for the general case 
m r We shall indeed consider spinors with momenta p such that we have 
pE(m2)-'--~ oo as J ~  oo, i.e., E(p),~p. It is therefore straightforward to 
estimate the expressions in the general case m 4:0 by the corresponding 
expressions for m = 0. 

In particular, we have, for m = 0, 

A ( ) 
~p0(p) -- 2 - , /2  Up0(P) 

(Op "ffUp0(p ) ' 

We shall choose N points p~ ,..., PN ~ R3 such that the following conditions 
are satisfied. 

1. min,~,~, IP~-P,I > 2J 

2. P<~pv<~2P, for all v=  1,...,N 

3. COp. n, >1 1 - 0 2, for all v = 1,..., N 

Condition 1 ensures that the spinors q/p,,..., ~'PN are orthonormal. The 
importance of Conditions 2 and 3 will hopefully become clear below. 

In order that Conditions 1, 2 and 3 are consistent with having N 
points (for large N) we must ensure that N balls of radius J can be packed 
into the domain defined by Conditions 2 and 3. Since small enough balls 
can fill at least half the volume of the given region we simply choose P such 
that 

2N <~ Vol({p I P<~p<~2P, 1-02<~r A 
(47r/3) j3 2 j3" 

Note that the assumption that N is larger than some universal number 
ensures that the balls are small, i.e., that J is small enough compared to P. 
Thus, we have the condition 

4 N )  ,/3 
P>_. ~ J. (20) 
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In particular, since we shall choose 0 independently of N we may assume 
that N is large enough that the above condition implies PO >~ 26. (Since 
we shall choose 6 ~ Go we see that the momenta of the spinors satisfy 
p2m - 2 --~ 00. ) 

We are now prepared to calculate (~F, Z ~ l  D~(A)~F), where W = 
ffp, A "'" A ~'PN" We obtain 

V, 2 D~(A) V = T~+ e J ~ . A  , (21) 
v : l  v = l  

where 

j~(r) "= i#~',(r) affp,,(r), (22) 

is the current of the v-th one-electron state  ~/Pv' and 

T~'=(C,,, ,(-ia.V+flm)~pp,.)=f E(p)lup,(p)12dp<~p~+6, (23) 

since we have assumed that m = 0 and hence E(p)= p. 
We must evaluate the current integral 

f j~ .  A = (2n) -3/2 29t f; u*,(q--p)(.~(p), o)(o)q .or)up,.(q)dpdq 

- (2n )  -3/2 2~R f; [ ,~(q--p).  ~qtt~',(p)Up,(q) 
A 

+iU*v(P)(A(q-p) x toq). oup,(q)] dp dq. 

We first observe that 

291 f f  [ iu*,(p)(A(q - p) x o~q) �9 oup,(q)] dp dq 

=29 t  f f  [ iu*,(p)(.~(q-- p) x o)q). n20-2Up,.(q)] dp dq = 0. 

The terms containing 0-1 and 0 3 vanish as they are clearly imaginary. 
The term with 0"2 vanishes because of the choice (19) of Up. 
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Note that u*(p) upv(q)=0 unless Ip-ql <25 and Iq-p.I <~5. Thus 
r  and we obtain for [pv-ql<2d~ 
that 

101p--Oql ~<2Op~ -I ~<25P -l,  

where we used that p.>~P.  Since o p - n l >  1 - 0 2  we have that 
[(.Opv-- nil ~< 0 and hence 

I J : (q -p) .  (Oq-ni ) l  ~<(2OP -I +0)Ao<.2OAo . 

Hence, since IP - ql < 28 we get from (18) that 

,A(q - p).Oq ~< - A 0 [  ((1)q_ p" n2) 2 -- 20]. 

Thus, 

j,,. A = (27r) -3/z 29t ~f A ( q - p ) .  O)qUSp,,(p) Upv(q ) dq dp 

3 
(2717)5/2 a o ~ - -3  ql, IPl < ~  

[ (O)q__p" n2)  2 - -  20] dp dq 

3 
(27r)5/2 A0 53 qt, IPi < 1 [ (O)q_ p "n2)  2 -- 20] dp dq. 

We now make the choice 

l ( f f l  1 d p d q ) - I  ff I 
0 ~-'~ ql, IPl < 1 ql, IPl < 1 

(O.)q_p �9 n2)2 dp dq 

and arrive at 

f Jr" A ~< -- 4(27r)-1/2 AoO53. 

From (21) and (23) we therefore obtain 

( " ) " W, ~ D.(A) ~ ~< y' [Ip~l "1-(~--4(211~) - l / 2 A 0 e 5 3 0 ]  �9 
v = l  v= l  

(25) 
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C. The nuclear coordinates. Finally, we show how to choose the 
nuclear coordinates following an idea in ref. 18. Consider the electronic 
density of the state ~ ,  p(r) = z N  2 ,=,  I~,p,(r)l then 

K Z~p(r) dr + D(p, p) + 
(~P, V~P) ~< - Z Ir-Ra------~ 1 IR~-RaI'  

k =  1 A', = 
t< < A  

were we introduced D(p, p) "=  �89 ~I p ( r ) I r - r ' l - '  p(r ') dr dr'. 
Note now that I N-~p = 1, i.e., N - ' p  can be considered a probability 

distribution. We may therefore average (q*, Vc~) considered as a function 
of R~ ,..., RK with respect to the probability measure 

R,,..., R/r ~-+ N - ' p ( R I ) . . .  N- ' p (RK) .  

We obtain 

f (~, V ~ ) N - I p ( R ~ ) . . . N - ' p ( R K ) d R ,  . . .dRK 

-- (1 --(Z/N)) 2 -- N -z Z 2. D(p, p). 
"-~- I  

We shall prove that [...] < 0. There are two cases. 

(1) N>~ Z: By moving electrons to infinity we may assume that 
Z ~< N < Z + 1. Therefore 

~ ~] (1--(Z/N))  2 - N - 2  E Z ~ Z - 2 - ( Z + I )  -2 E Z~- 
K = !  I , ' = l  

~ Z - 2 - 2 ( Z +  1 ) - 2 < 0 .  

(2) N<Z:  We may move nuclei to infinity and assume that 
N < Z < N + max~.Z~.. Therefore 

( 1 - ( Z / N ) ) 2 - N  -2 ~_, Z ~ ( m a x Z , , . ) 2 N - 2 - N  -2 ~ Z2~.<<.O. 
~,'--- 1 J" ~ , -=1  

We can therefore find nuclear positions R ~,..., RK such that 
(v, v~v) ~0. 

Using these coordinates together with (17) and (25) we get 

N 

~o[ ~,, ,I,] ~< ~ [p~ + a -  -~(2~) -'/~ Xo ea~0] + 2-'54Xo ~ a~. 
v = l  
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We now choose P=(4N/762)i/3t5 in accordance with (20). We than choose 
Ao such that ~(2z~) -1/2 A o e630=4P,  i.e., 

3 
Ao-1121/3 (2~) i/2 0 -5/3e-i t~-2Nl/3. 

Then, using Condition 2 we have p v - ( 8 n / 3 ) A o e 6 3 0 < ~ - 2 P .  If we insert 
these values and estimates above we find 

~o[~I J, ~I j ] <~[--2N4/3(4/(702)) 1/3 + N +  3254112-2/31rO-l~ 

It is now clear that the expression in [ ] will be negative for N sufficiently 
large. The energy can therefore be made arbitrarily negative by choosing 
large. 

APPENDIX A. BKS INEQUALITIES 

As a convenience to the reader we give a proof of some cases of 
the inequalities due to Birman, Koplienko, and Solomyak. t2) The case 
needed in Section 3 corresponds to p = 2 below. There we are interested in 
( B - A ) _ ,  but here we treat ( B - A ) +  to simplify keeping track of signs. 
The proof is the same. Recall that X+ := (IX'l + x)/2. 

Theorem 3. Let pf> 1 and suppose that A and B are two non- 
negative, self-adjoint linear operators on a separable Hilbert space such 
that ( B P - A P )  I/p is trace class. Then ( B - A ) §  is also trace class and + 

t r ( B -  A) + ~< t r ( B P - A P )  l/p + �9 

Proof. Our proof will use essentially only two facts: X~---, X - 1  is 
operator monotone decreasing on the set of nonnegative self-adjoint 
operators (i.e., X>~ Y>_.0 =:. y - i  >t X - l )  and X ~  X r is operator monotone 
increasing on the set of nonnegative self-adjoint operators for all 0 < r ~< 1. 
Consequently, X~--, X -r is operator monotone decreasing for 0 < r ~< 1. 

As a preliminary remark, we can suppose that B t> A. To see this, write 
B p = A  p + D .  If we replace B by [A p + D + ] I / p  then (B p - A p ) + = D +  
is unchanged, while X := B - A ~ [ A p + D + ] lip _ A can only get bigger 
because X~----, X lip is operator monotone on_ the set of positive operators. 
Since the trace is also operator monotone, we can therefore suppose that 
D = D + ,  i.e., B P - A  p + C p with A, B, C>~ 0. Our goal is to prove that 

tr[(A p + Cp)I /p-A]  ~ tr C, (26) 

under the assumption that C is trace class. 
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To prove (26) we consider the operator X ' =  [Ap  + C p ] I / p - A ,  which 
is well defined on the domain of A. We assume, at first, that A P ~  g.P for 
some positive number e. Then, by the functional calculus, and with 

E "= [ A p  -b CP] (1 --P)/P and P " - ' A I - P - E  

we have 

X - - E [ A  p + C p] - A I - p A  p = - p A  p + E C  p (27) 

Clearly, P >~ 0 and 0 ~ P ~ e ~- P. 
Let Y := E C  p. We claim that Y is trace class. This follows from Y* Y = 

CPE2C p ~ C P C 2 - 2 p c  p ---- C 2. Thus,  [ r [  ~ C~ and hence tr Y= tr Cp/2EC p/2 

tr C. 
It is also true that P is trace class. To see this, use the integral 

representation, with suitable c > O, A 1 - p = c j o  ( t  + A ) - ~ t ~ - p dt. Use this 
twice and then use the resolvent formula. In this way we find that 

P = c  (A p + t) -~ CP(A p q- C p -t- t) -~ t I I-p)/p dt. 

Since C is trace class, so is C p, and the integral converges because of our 
assumed lower bound on A. Thus, P is trace class and hence there is a 
complete, orthonormal family of vectors v~, v2,..., each of which is an eigen- 
vector of P. 

Since X>~0, the trace of X is well defined by Z) .~  (vj ,  Xv j )  for any  

complete, orthonormal family. The same remark applies to E C  p since it is 
trace class. Thus, to complete the proof of (26) it suffices to prove that 
(vj ,  P A  Pvj) >t 0 for each j. But this number is 2j(vj, A Pvj) >1 O, where 2j is the 
(nonnegative) eigenvalue of P, and the positivity follows from the positivity 
of A. 

We now tum,~to the case of general A ~> 0. We can apply the above 
proof to the operator A + e for some positive number e. Thus we have 

tr[ [(A + e) p + C P ] ' / P - ( A  + e)] ~< tr C. (28) 

Let Cpl, (~2 . . . .  be an orthonormal basis chosen from the domain of AP. This 
basis then also belongs to the domain of A and the domain of 
[(A + e ) P +  CP]  lip for all e >t0. We then have 

tr X =  ~ (cpj, Xcpj). 
J 
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Note that a-priori we do not know that the trace is finite, but since the 
operator is non-negative this definition of the trace is meaningful. Operator 
monotonicity of X ~/p gives 

(q,j, E[(A +e) ,  + c ,] ' / , ' - (A  +e)] ~oj)>_. (~oj, ( x - e )  ~,j). 

It therefore follows from (28), followed by Fatou's Lemma applied to sums 
that 

tr C~> lim inf ~ (~oj, [ [ (A -Jf-~)P + CP]I/p--(A + ~)] (pj) 
~--*0 

J 

~<~ lim inf(q~j, [[(A +e)P+CP]'/P-(A +e)] q~s) 
~ ---* 0 

J 

~>trX. 

APPENDIX B. COUNTING SPIN STATES 

Our goal here is to prove that when �9 is in af'N. ~r the antisymmetric 
tensor product of the positive energy subspace of the Dirac operator (with 
or without a magnetic field, d )  then the one-body density matrix is bounded 
by 2 and not merely by 4, as would be the case if there were no restriction 
to the positive energy subspaee. This result will allow us to use 2 instead 
of 4 in inequalities (6) and (14). We thank Michael Loss for the idea of this 
proof. 

The one-body density matrix is defined in terms of an N-body density 
matrix (or function) by the partial trace over N -  1 variables. We illustrate 
this for functions, but the proof works generally. If �9 is a function, then 

f, F(r, a; r ,  a ' ) "=  N 
N - - l )  

1LP(I', O', Z2, Z3,. . .  , ZN) ~ ( r ' ,  o't, z 2 .... , ZN) dz 2 . . . dZN,  

where z denotes a pair r, a and dz denotes integration over ~3 and summa- 
tion over the q "spin" states of a. We are interested in q = 4, but that is 
immaterial for the definition. 

The kernel F is trace class; in fact its trace is qN. It is also obviously 
positive definite as an operator. The first remark is that F~< 1 as an 
operator. To prove this easily, let @ be any normalized function of 
one space-spin variable z and define the function of N +  1 variables 
(~)(Z0,... , ZN)  :=I~r  ILIJ(Zl,... , ZN) JC'ZT=I ( - 1 )  j ~(zj) V(Zo,..., ~j,..., ZN), 
where :?j denotes the absence of zj. This function �9 is clearly antisymmetric 
and the integral over all variables of its square is surely nonnegative. 
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However, this integral is easily computed (using the normalization of 
and V) to be ( N +  1 ) - ( N +  1)(if, y~). 

The next step is to consider the reduced kernel (without spin) defined 
by 

q 

~,(r, r ' ) : =  ~ F(r, a; r', a), 
o ' - - - 1  

which evidently satisfies the operator inequality 0 ~ y ~ q, since F ~< 1. 
The electron density referred to in Section 4.1 is defined by 

p(r) "= ),(r, r), 

but it will not be needed in this Appendix. Another quantity of interest is 
the current, defined by 

j(r) "= ~ F(r, a; r, r)a~,  3. 
O', "t" 

It follows from this that [j(r)[ ~ p(r) for every r ~ R 3. 
Our goal here is to prove the following fact about y" 
If the N-body ~P is in ~N, .~ then the correspondingly satisfies 0 ~ y ~ 2 

as an operator. 
To prove this we introduce the unitary matrix in spin-space (related to 

the charge conjugation operator) 

where 1 denotes the unit 2 x 2 unit matrix. With a slight abuse of notation, 
we shall also use U to denote the U|  1 acting on the full one-particle 
space, i.e., (U)(r, a ' ) = Z ,  U(a', a) f (r ,  a). The important point to note, 
which is easily verified from the Dirac equation, is that ~ ~ 3r if and only 
if U~ e ~ _ ,  the negative spectral subspace of D(~r 

Given f~L2(R3),  we define F ~ to be the spinor F~(r,a):=f(r)d~.~. 
Then evidently ( f  y f ) =  Z~ ( F~, FF~) �9 However, since the matrix U merely 
permutes the spin indices and possibly changes the sign from + to - ,  we 
have that ~,~ (F ~, FF ~) = ~ ( F  ~, FvF~), with Fu  := U-~FU. (Actually, the 
proof only requires that U be unitary, nothing more.) 

We claim that F+Ft~<~I in which case we have proved that 
(f ,) ,f)  <~ q/2 = 2, as claimed. To see this, we note that F~< 1 on ~ +  and 
Fv  ~ 1 on ~ .  Since the two subspaces are orthogonal, F +  Fu  ~< 1 on the 
whole spinor space. 
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